A research team has developed an integrated mathematical and multi-agent-based model to simulate hepatic inflammatory response caused by salmonella, reports Science Daily.

Research by industrial engineering and biology researchers at Kansas State University marks a significant milestone in the battle against sepsis, the second highest cause of death in intensive care units in the US.

The study, “An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data,” was recently published in the peer-reviewed scientific journal PLOS ONE.

Zhenzhen Shi, a December 2015 industrial engineering doctoral graduate and first author; faculty researchers David Ben-Arieh, professor, and John Wu, associate professor, both of industrial engineering; and Stephen Chapes, professor of biology, studied the biological processes that lead to and result from sepsis, a hepatic — or liver-related — inflammatory response.

The research team developed an integrated mathematical and multi-agent-based model to simulate hepatic inflammatory response caused by salmonella. Rapid response is critical to successful treatment, but because of the unpredictable nature of hepatic inflammatory response, sepsis and septic shock are difficult to identify in individual patients.

“Previous research used a simplified mathematical model to represent the progression of a sepsis episode,” Ben-Arieh said. “Such a model was not able to capture the full complexity of this health risk.”

View the full story at www.sciencedaily.com